
Order this document
by AN1733/D

Motorola Semiconductor Application Note

AN1733
Implementing Caller ID Functionality
in MC68HC(7)05 Applications
By Derrick B. Forte and Hai T. Nguyen
Networking and Communications Operation
Austin, Texas

Introduction

Caller ID is a service that transmits information concerning a calling
party, such as a telephone number and name, to a called subscriber.
Caller ID capable equipment at the subscriber’s premises captures,
processes, and displays the data. The majority of Caller ID subscribers
are residential customers who use the service to screen incoming calls.
Caller ID is also used by commercial subscribers to automate the
retrieval of customer records from in-house databases. The widespread
acceptance of this service in both the residential and commercial
subscriber markets has led to the development of a number of different
types of Caller ID devices such as Caller ID adjunct boxes, computer
peripherals, and telephones with Caller ID functionality.

This application note explores the hardware and software issues
involved in implementing Caller ID functionality in applications based on
Motorola’s Family of MC68HC(7)05 microcontrollers (MCU). The note
starts with a discussion of the signals and protocol used by service
providers to transmit Caller ID data. The remainder of the note is
devoted to a design example. The application developed for this note is
that of a computer peripheral that is based on a Motorola
© Motorola, Inc., 1998 AN1733

Application Note
MC68HC(7)05P9 microcontroller and is capable of receiving Caller ID
transmissions and displaying the received data on an IBM AT
compatible computer.

The Caller ID Protocol

A number of requirements governing Caller ID transmissions are
imposed on a service provider.

The first of these is that the transmission of Caller ID data is permitted
whether the equipment at the customer’s site is in the on-hook or off-
hook state. This requires that a service provider be able to detect the
state of a subscriber’s equipment and adjust the transmission of data
accordingly. Since transmitting data while the customer’s equipment is
in the off-hook state usually involves interrupting an ongoing call, the
issues that must be addressed for transmitting to equipment in the two
states are different. This has led to the development of a signalling and
transmission protocol for the off-hook state that is more sophisticated
than that for the on-hook state. As a result, devices capable of receiving
Caller ID data while the subscriber’s telephone is off-hook costs more
than on-hook only devices. Given that on-hook only devices were
offered first and the added cost to both the service provider and the
subscriber to support the off-hook state, most Caller ID capable
equipment in service today only support the on-hook protocol. For this
reason, this application note only covers the design of applications that
are capable of supporting the on-hook protocol and, consequently, the
specifications dealing with the off-hook state will not be discussed here.

The transmission of Caller ID information is governed by a set of
specifications developed by Bellcore. These requirements, known as the
Voiceband Data Transmission Interface, define the encoding, timing,
and formatting of Caller ID data and the electrical characteristics of the
analog signals used to transmit it. The interface allows data
transmissions for the on-hook state to occur with or without power
ringing. The more common of the two cases is that in which the
transmission of data is preceded by a power ring. The interface specifies
that data transmission occur in the silent interval between the first and
AN1733

2 MOTOROLA

Application Note
The Caller ID Protocol
second power rings of a call. It should be noted that a power ring need
not consist of a single continuous tone. There are some service
providers that signal their subscribers with a series of short tones instead
of one continuous tone. The burst of tones occurs within the period of
time normally allotted for a single tone, thus replacing the single power
ring. The tone burst is then followed by a silent interval and another
burst. This type of signalling is known as distinctive ringing. The interface
allows service providers that use distinctive ringing patterns to transmit
Caller ID data as long as the silent interval is of a minimum length. If a
provider’s signalling does not meet these specifications, the
transmission of Caller ID data is not supported. Figure 1 illustrates the
timing specifications that service providers must meet to transmit Caller
ID data.

Figure 1. Caller ID Data Transmission Timing Specifications

The interface is composed of three layers:

• Message assembly layer

• Data link layer

• Physical layer

At a service provider’s facility, a block of Caller ID data flows down from
the message assembly layer, through the data link layer, and finally
down to the physical layer where it is converted into a modulated analog
signal. As a block travels through the interface, each layer prepends and
appends data to the original block until it reaches the physical layer. This
process is similar to that used by many protocol stacks such as TCP/IP.

The message assembly layer, the highest level of the interface, specifies
a message format for a block of Caller ID data. The information
contained in the block is determined by the level of service to be

0.2 TO 3 SECONDS 0.5 TO 1.5 SECONDS VARIABLE >= 200 MS 1.8 TO 3 SECONDS

CONTINUOUS POWER RING
OR

DISTINCTIVE RING PATTERN
DATA TRANSMISSION

CONTINUOUS POWER RING
OR

DISTINCTIVE RING PATTERN

SILENT INTERVAL BETWEEN POWER RINGS
AN1733

MOTOROLA 3

Application Note
provided to subscribers. The data layer defines the framing format and
error correction methods that are applied to the raw digital bit stream that
is transmitted to the subscriber. At the lowest level, Caller ID data is
transmitted over the telephone lines as a modulated analog signal. The
physical layer specifies the signal’s modulation and its electrical
characteristics. The following sections will discuss the three layers.

The Message
Assembly Layer

The message assembly layer segments the data within a Caller ID data
packet. The layer defines two formats for packets:

• Single data message format (SDMF)

• Multiple data message format (MDMF)

The SDMF is the simpler of the two formats and is discussed first.

The message assembly layer forms an SDMF formatted packet by
prepending a 2-byte header to a Caller ID data packet. The first byte of
the header is the packet’s message type parameter value. This value
alerts a Caller ID device as to the type of information that is contained in
the accompanying data block. There are currently three values defined
for the message type parameter of SDMF formatted packets. A packet
with a message type value of 0x04 contains the number of a calling
party, a value of 0x06 indicates a message waiting indicator packet, and
a value of 0x0B has been reserved for future applications. The next byte
in the header is the message length parameter. This parameter, as its
name suggests, contains the number of bytes of Caller ID data that
remain in a block. Figure 2 shows the structure of an SDMF frame.

Figure 2. SDMF and MDMF Frame Structure

The message assembly layer also specifies the arrangement of
information within the data portion of a frame. The data portion of an
SDMF frame consists of ASCII codes arranged in three fields
representing the date, time, and number of an incoming call.

MESSAGE TYPE PARAMETER MESSAGE LENGTH PARAMETER CALLER ID DATA
AN1733

4 MOTOROLA

Application Note
The Caller ID Protocol
• The date field which is the first piece of information in the data
block, consists of 4 bytes. The first two bytes are ASCII codes for
the digits representing the month and the other two represent the
day. Any months or days that can be represented by a single digit,
are preceded by a zero.

• The next 4 bytes are ASCII codes for digits representing the time.
The first two bytes are the ASCII codes for the digits representing
the hour and the remaining two represent the minutes. The values
in the hour field are allowed to range from 0 to 23, while the
minutes can range from 0 to 59.

• The remaining 10 ASCII codes represent the digits of the
telephone phone number of the incoming call. If the incoming call
is a local call and lacks an area code, the area code portion of the
number field is filled by default with the ASCII codes for three
zeroes. Figure 3 illustrates the arrangement of information within
an SDMF formatted packet.

Figure 3. SDMF Data Block Format

The message assembly layer’s second format, the multiple data
message format (MDMF), is more complex and versatile than the SDMF.
It is capable of delivering more data concerning an incoming call, such
as the name of a calling party. Although both formats share some
features in common such as the message type and the message length
parameters, the structure of the MDMF is more flexible and more readily
accommodates the development of new provider services.

As with SDMF, the message type parameter is the first byte of an MDMF
formatted packet. Since MDMF is designed to provide a wider variety of
information than SDMF, six message type values are specified for it
instead of the three defined for SDMF. The message type value
identifying a Caller ID data block is 0x80, 128 decimal. The message
length parameter, the next byte in the frame, specifies the number of
bytes that follow in the data block. It is after the message length

DATE TIME 10-DIGIT PHONE NUMBER
AN1733

MOTOROLA 5

Application Note
parameter, that the structure of an MDMF packet differs from that of a
SDMF.

At this point, the message block is broken up into smaller messages
called parameter messages. Each parameter message is composed of
a parameter type value, a parameter length value, and an accompanying
data block that contains a specific type of information, such as the
number of an incoming call. Each piece of information that is transmitted
in an MDMF formatted packet, such as the time and date, calling
number, and the calling name, is packaged within its own parameter
message. This encapsulation of data enables a service provider to
selectively add to or omit information from Caller ID transmissions.

As its name suggests, the parameter type value is used to identify the
type of data contained in a parameter message. Currently, 17 parameter
type values are defined for MDMF. The values of most interest to Caller
ID capable equipment are 0x01, 0x02, and 0x07 which identify a time
and date, number, and name parameter message respectively. This
parameter is followed by the parameter length value which contains the
remaining number of bytes in a parameter message’s data block.
Figure 4 illustrates the format of a parameter message.

Figure 4. Parameter Message Structure

As mentioned earlier, each parameter message contains a specific
piece of information, such as the time and date of an incoming call. If a
parameter message carries a type of information that is supported by
SDMF, the data within it is represented and arranged the same way as
its counterpart in SDMF. A calling party’s name, a data type that is not
supported in SDMF, is transmitted as the ASCII codes for the letters
comprising the name.

PARAMETER TYPE BYTE PARAMETER LENGTH BYTE CALLER ID SPECIFIC INFORMATION
AN1733

6 MOTOROLA

Application Note
The Caller ID Protocol
The Data Link
Layer

The data link layer formats the data to be transmitted into a frame for the
next layer below it, the physical layer. The layer also defines Caller ID’s
signalling and error detection functions. This layer prepends a start bit
and appends a stop bit to each byte of data that it has received from the
message assembly layer. The layer also specifies that data be
transmitted LSB (least significant bit) first. The layer prepends a
preamble sequence and appends a checksum to each frame of data that
is transmitted. The preamble serves as the signalling mechanism to alert
and condition the customer’s equipment for receiving a transmission.

The preamble sequence for the on-hook protocol consists of two parts:

• Channel seizure signal

• Mark signal

The channel seizure signal is transmitted first and consists of 300 bits of
alternating 0s and 1s. The sequence begins with a 0 and ends with a 1.
The seizure signal is followed by the mark signal which consists of 180
marks or high bits. The checksum that is appended to each frame serves
as a transmission’s error detection mechanism. Though the data link
layer provides for error detection, no provision is made for error
correction. The on-hook protocol does not provide a mechanism for a
subscriber’s Caller ID device to request a re-transmission of data from
the central office. Therefore, it will discard a frame if an error is detected.

Transmission errors are detected by calculating a checksum value as
data bytes are received and comparing the value to the checksum value
sent at the end of a transmission. If the two values are identical, there is
a high probability that the transmission is error free. The detection of an
error is not absolute because the Caller ID’s error detection algorithm is
not capable of detecting every possible transmission error. Caller ID
checksums are the two’s complement of the modulo 256 of the sum of
all the data bytes within a frame starting with the message type
parameter byte and excluding the checksum. After being processed by
the data link layer, a Caller ID frame appears as pictured in Figure 5 .
AN1733

MOTOROLA 7

Application Note
Figure 5. Caller ID Frame Structure

The Physical Layer The physical layer defines the electrical characteristics of the analog
signal used in the transmission of Caller ID data frames over the public
telephone network’s lines. The physical layer also defines the method of
modulating the signal. The physical layer specifications require that data
be transmitted to a subscriber’s equipment as an asynchronous serial
binary bit stream at a rate of 1200 baud plus/minus 1%. Data is actually
delivered to a subscriber’s equipment by means of a binary frequency-
shift-keyed (BFSK) modulated analog signal. During a transmission, a
logic 1 is coded by a frequency of 1200 Hz plus/minus 1%, while a logic
0 is coded by 2200 Hz plus/minus 1%.

This concludes the discussion of the structure and theory of the Caller
ID protocol. The remainder of this note is devoted to applying this
information in the development of an application based on an
MC68HC(7)05P9 microcontroller.

Design Example:
An IBM AT
Keyboard Caller
ID Device

The design example developed for this application note is that of a Caller
ID-capable IBM AT-compatible computer peripheral. The application
consists of two parts:

• A peripheral device that interfaces with an IBM AT host computer
at its keyboard interface

– The peripheral connects to the host’s keyboard interface at
one end and to the keyboard’s cable at the other. The device
uses the host computer’s keyboard interface as its power
supply and communications link to the host.

• CALLERID.EXE, a Windows 95 application program that
executes on the host computer

CHANNEL SEIZURE
SIGNAL

300 ALTERNATING 0s
AND 1s

MARK SIGNAL
180 1s

CALLER ID DATA CHECKSUM
AN1733

8 MOTOROLA

Application Note
The Caller ID Protocol
At its highest level, the system’s operation is as follows. (Consult
Appendix B — System Operation Flow Chart for a flow chart
describing the system’s operation.)

1. The keyboard Caller ID device is powered on and reset when the
host computer is turned on. The device than waits for the arrival of
a Caller ID transmission.

2. CALLERID.EXE is invoked immediately after Windows 95 boots
up. CALLERID.EXE hides its main window and begins executing
in the background.

3. On receiving a Caller ID transmission, the device transmits a
<CONTROL L> to the host through the host’s keyboard interface
in the form of a series of IBM AT keyboard scan codes.

4. The host interprets the scan codes as a series of keystrokes,
interrupts the application that currently has the focus in the
Windows 95 environment, and gives the focus to CALLERID.EXE.

5. After a time delay, the device transmits an error code to the host if
it detected an error in the Caller ID data. CALLERID.EXE then
displays an error message in its main window, a dialog box. If the
Caller ID data is error free, the device transmits it as a series of
scan codes which CALLERID.EXE interprets as an ASCII string.
CALLERID.EXE then processes the string and displays the
information in its dialog box on the host’s screen.

6. After transmitting the Caller ID data to the host, the peripheral
returns to scanning the telephone line for Caller ID transmissions.

Keyboard Caller
ID Device
Hardware Design
Overview

The keyboard Caller ID device’s hardware design is divided into two
functional blocks:

• Caller ID data acquisition block

• Keyboard interface block

The Caller ID data acquisition block serves as the application’s interface
to the telephone line. This block receives the Caller ID analog signal,
demodulates it, and converts it into a digital stream. The design of this
block is centered on Motorola’s MC145447 calling line identification
AN1733

MOTOROLA 9

Application Note
receiver with ring detector device which, when used with a few passive
components, is capable of performing these functions.

The digital stream produced by the MC145447 is passed to the keyboard
interface block, which is primarily implemented with a Motorola
MC68HC705P9 microcontroller (MCU). The MC68HC705P9 parses the
stream into individual bytes and converts the data into IBM AT keyboard
scan codes for transmission to the host. These scan codes are sent to
the host through its keyboard interface. The host computer interprets the
scan codes as a series of keystrokes which are processed by
CALLERID.EXE. This block also provides the device’s interface to the
host computer’s keyboard interface by emulating the signals used in
keyboard-to-keyboard interface transactions and the IBM AT keyboard
interface protocol.

This discussion of the application’s hardware design continues by
examining each of these blocks in detail.

The Caller ID Data
Acquisition Block

The Caller ID data acquisition block performs these two functions within
the application’s system design:

1. Provides an electrical interface to the telephone line

2. Demodulates and validates the Caller ID analog signal and
converts it to a digital bit stream

Although many Caller ID designs implement these functions with
discrete analog circuitry, a more integrated solution was chosen for this
application. Motorola’s MC145447 calling line identification receiver with
ring detector device was chosen to implement this entire block. This
device is capable of providing the needed interface to the telephone line,
demodulating the BFSK asynchronous data signal, and outputting a
digital stream. The design of this block was largely taken from pages
2-765–2-774 of the Motorola Communications Device Data, Motorola
document order number DL136/D, Rev. 3. The device also has a
number of signal validation and power-saving features that are useful for
Caller ID designs for which low-power consumption is an issue. Since
this application is powered by the host computer’s keyboard interface, it
does not use any of the MC145447’s power-saving modes.
AN1733

10 MOTOROLA

Application Note
The Caller ID Protocol
The MC145447’s interface to the telephone line’s twisted pair can be
divided into two types of signals:

• Caller ID data acquisition signals

• Ring detection and validation signals

The ring detection and validation signals serve to detect the presence of
a valid ring signal on the twisted pair and participate in bringing the
device out of power down mode.

Four signals comprise the ring detection and validation portion of the
interface. Three of the signals, ring detect in 1, RDI1, ring detect in 2,
RDI2, and /ring time, /RT, are inputs. There is also one output, ring
detect out, /RDO, which is asserted when a valid power ring is detected
on the telephone line twisted pair. The /RT pin works in conjunction with
the RDI1 pin to generate internal signals that are part of the device’s
power-up circuitry.

To conserve power, the MC145447’s power-up circuitry applies power
to different sections of the device as they are needed. In the power-up
sequence, the /RT and RDI1 signals are used to activate power to the
ring analysis section of the device. This section determines whether a
valid ring signal is present on the twisted pair. As shown in the schematic
in Appendix A — Keyboard Caller ID Device Schematics , the voltage
at the RDI1 pin is provided by resistor R10, which is part of a voltage
divider circuit comprised of resistors R10, R11, and R12. The resistor
network divides an AC coupled, rectified version of the voltage present
between the tip and ring sides of the twisted pair into voltages that are
sampled by the RDI1 and RDI2 pins. The value of R10 is chosen such
that if a voltage of 40-Vrms or more is present on the twisted pair, which
indicates that a power ring might be taking place, the RDI1 pin and its
associated circuitry will turn power on to the ring analysis circuitry. The
/RT pin is connected to an RC combination that holds the pin low during
the low periods of a power ring. The RDI2 pin serves as the only input to
the ring analysis section. The signal at this pin is provided by resistor
R12 of the divider network. The duty cycle of this signal is used to
validate the presence of a power ring. In the event that a power ring is
detected, the ring analysis circuit asserts the /RDO pin.
AN1733

MOTOROLA 11

Application Note
The data acquisition signals on the MC145447 consists of a tip input, TI,
and ring input, RI pin. The tip input is AC-coupled to the tip side of the
telephone line’s twisted pair through capacitor C7. The ring input signal
is AC-coupled to the ring side of the twisted pair through capacitor C8.
The signal that is presented to these two pins is demodulated and
converted into the digital stream that is output by the device.

In this application, the MC145447’s interface with the system’s
microcontroller consists of three pins:

• Data out cooked, DOC

• /Ring detect out, /RDO

• /Power up, /PWRUP

The MC145447 outputs a digital stream on two pins:

• Data out cooked, DOC

• Data out raw, DOR

The DOR pin outputs the entire data stream demodulated by the device
starting with the channel seizure and mark signals and ending with the
checksum byte at the end of a transmission. The DOC pin, on the other
hand, outputs data after a transmission passes an internal data
validation process and does not output the channel seizure and mark
signals. Data is captured by the MC68HC(7)05P9 by connecting DOC to
pin PC0 on the MC68HC(7)05P9 which is configured as an input. The
/RDO pin is connected to pin PC2 of the MCU which is configured as an
input. As stated earlier, the /RDO pin is asserted when a valid power ring
is detected on the twisted pair. The assertion of /RDO, along with the
start of the transmission of data within 0.5 to 1.5 seconds after the
deassertion of /RDO, is used by the MC68HC(7)05P9 to qualify the start
of a data stream from the MC145447.

The MC145447 has a requirement that its /PWRUP pin be at a logic 1
for a minimum of 10 µs after VDD reaches its full value. Typically, this
requirement is met by delaying the assertion of /PWRUP with an RC
circuit. To eliminate the need for these two components, the /PWRUP
pin is connected to the MC68HC(7)05P9’s PC3 pin which is configured
as an output. This pin asserts /PWRUP after an appropriate delay.
AN1733

12 MOTOROLA

Application Note
The Caller ID Protocol
The Keyboard
Interface Block

An in-depth discussion of the signals, protocol, and the hardware and
software issues involved in interfacing an MC68HC(7)05-based
application to the keyboard interface of an IBM AT-compatible computer
is provided in the application note Interfacing MC68HC05
Microcontrollers to the IBM AT Keyboard, Motorola document number
AN1723/D. The generic circuit presented in this note served as the basis
for the design of the keyboard interface block in this application.

NOTE: Note that the scan code set used in this application is the IBM AT
keyboard set. This differs from the PS/2 scan code set that is used by
the keyboards of some IBM AT-compatible machines. The keyboard
Caller ID device will not work on host computers with keyboards that use
the PS/2 scan code set.

Keyboard Caller
ID Device Software
Design Overview

The software design of this application is divided into two parts:

• The firmware that resides on the MC68HC(7)05P9, the
application’s microcontroller

• CALLERID.EXE, a Windows 95 application program

The firmware’s main function is to capture the raw digital data stream
generated by the MC145447 and transmit it to the host computer for
further processing. Data is transmitted to the host in the form of
keyboard scan codes that are sent through the host’s keyboard
interface. The host receives the scan codes and interprets them as
keystrokes. The sequence of simulated keystrokes is read by
CALLERID.EXE. CALLERID.EXE, the Windows 95 application program,
parses and converts the string back into binary data from which it
extracts Caller ID information. CALLERID.EXE then formats and
displays the data in a dialog box that serves as the application’s main
window.

This division of functionality between the Caller ID device and the host
computer allows for the greater portion of processing to be off loaded to
the host computer where a larger amount of resources are available.
This reduces the functionality of the Caller ID device, thus allowing its
design to be implemented with a smaller and cheaper microcontroller.
AN1733

MOTOROLA 13

Application Note
The following sections provide a detailed description of the design and
implementation of both CALLERID.EXE and the application’s firmware.

Keyboard
Caller ID Device
Firmware Design

The Caller ID device’s firmware follows the program flow shown here.
(Consult Appendix C — Keyboard Caller ID Device Firmware Flow
Chart for a flow chart describing the firmware’s design.)

1. On reset the general I/O (input/output) pins on the
MC68HC(7)05P9 are configured and initialized to implement the
Caller ID device’s hardware design.

2. The firmware waits in an loop for the assertion of the MC145447’s
/RDO signal, which is monitored on the MC68HC(7)05P9’s PC2
I/O pin. The assertion of this signal indicates that a power ring has
been detected on the twisted pair.

3. The MC68HC(7)05P9 waits for the deassertion of the
MC145447’s /RDO pin within 2.25 seconds after its assertion. If
the MCU detects a start bit on the DOC pin within two seconds
after the deassertion of /RDO, the conditions are met for the
MC68HC(7)05P9 to begin monitoring for a transmission.

4. The MC145447 transmits the CALLER ID data to the
MC68HC(7)05P9 in the form of a raw digital stream on its DOC
pin. The MCU reads the data on its PC0 pin.

5. On receiving the data from the MC145447, the MC68HC(7)05P9
parses the stream into individual bytes and checks the data for a
checksum error. If a checksum error has been detected, it is
flagged by a global variable; otherwise, the data is converted into
an array of AT keyboard scan codes for transmission to the host
computer.

6. The application transmits a <CONTROL L> keystroke sequence
as a series of scan codes. This interrupts the application that
currently has the focus in the Windows 95 environment, restores
CALLERID.EXE’s hidden main window, and gives it the focus.

7. If a checksum error was not detected during the reception of the
CALLER ID data, the scan code array that represents the received
data is transmitted to the host computer; otherwise; an error code
is sent.
AN1733

14 MOTOROLA

Application Note
The Caller ID Protocol
8. The firmware returns to monitoring the twisted pair for a new
Caller ID transmission.

The firmware’s functions can be divided into three types of routines:

• Device initialization routines

• Caller ID data acquisition routines

• Keyboard interface routines

The device initialization routines configure and initialize the
MC68HC(7)05P9’s I/O pins to implement the application’s hardware
blocks. As mentioned earlier, port A I/O pins PA0–PA5 are configured to
implement the keyboard interface block, while three port C pins – PC0,
PC2, and PC3 – serve as the MC68HC(7)05P9’s interface to the
MC145447. All remaining general-purpose I/O pins are configured as
outputs to eliminate the need for pullup resistors on them. The data
acquisition routines of the firmware consist of the sampling and time
delay routines that capture data from the MC145447’s DOC line. The
MC68HC(7)05P9 samples the data stream at its PC0 pin and parses it
into individual bytes. The fact that each piece of Caller ID data begins
with a start bit and ends with a stop bit makes it easy to delineate
between individual bytes. The time delay functions used for data
acquisition routines are not only used to sample the bits within a byte but
must also allow for the inter-character delays that the interface allows.

The keyboard interface firmware mainly consists of a transmission
routine and its accompanying time delay functions. The keyboard
interface’s transmit function has within it a call to a routine that is capable
of receiving host computer commands. A host computer’s keyboard
interface will hold the data line low if it detects a transmission error in a
keyboard-to-host data transfer. The keyboard protocol stipulates that a
host computer send a resend command (0xFE) to the keyboard if it
detects an error in a keyboard-to-host data transfer. Therefore, the
keyboard interface block’s transmit routine must be able to receive the
host’s resend command and re-transmit the original data in the event of
an error. For this application, the number of retransmission attempts was
arbitrarily set at one. Therefore, if an error occurs when the device sends
a byte to the host, the device will capture the host’s resend command
and attempt a retransmission of the data. If the retransmission fails, the
AN1733

MOTOROLA 15

Application Note
device will reconnect the keyboard’s clock and data signals to those of
the host and return to monitoring the telephone line. To transmit data to
the host, the transmission routine toggles PA0, the data output signal,
and PA2 pin, the clock output signal, in accordance with the timing
specifications for keyboard-to-computer data transfers. The host
command reception routine reads the data from the PA1 pin and toggles
the clock signal in accordance with the timing specifications for
computer-to-keyboard data transfers.

CALLERID.EXE
Design

Before discussing the implementation of CALLERID.EXE, an
explanation of some of its design concepts is in order.

The operation of CALLERID.EXE is analogous to that of the terminate-
and-stay-resident (TSR) programs familiar to MS-DOS users. TSRs are
DOS applications that, unlike normal programs, remain in the PC’s
memory even though they may not be executing at the time. TSRs are
invoked by the user’s pressing a pre-determined key or key combination.
These key sequences, commonly referred to as hot keys, typically
consist of the CONTROL key followed by a letter. On receiving a hot key
sequence, a specially designed section of the TSR’s code that is usually
loaded when DOS boots up, interrupts, or stops the execution of the
application that is currently running in the DOS environment and starts
the execution of the TSR. CALLERID.EXE operates in much the same
way. CALLERID.EXE is invoked immediately after Windows 95 boots
up, along with all the other programs in the Windows 95 Start
Menu/StartUp folder. This is done by placing CALLERID.EXE in the
folder by using the Start Menu Programs option in the Windows 95
Settings menu. CALLERID.EXE continues to run in the background
until it is given the focus in the Windows 95 environment by a
<CONTROL L> key sequence being sent by the keyboard Caller ID
device.

When developing a TSR program, programmers have to write the code
that enables the program to remain resident in memory and respond to
the desired hot key sequence. Oftentimes this has led to situations in
which TSRs interfere with the operation of normal programs and with
each other. The Windows environment eliminates the need for a
developer to write low level code TSR code by providing two functions in
AN1733

16 MOTOROLA

Application Note
The Caller ID Protocol
its applications programming interface (API) that can give a Windows
application the same functionality as a TSR. These two functions allow
an application to connect or disconnect user-defined functions to
Windows 95.

The first of these functions, HHOOK SetWindowsHookEx(int

idHook, HOOKPROC lpfn, HINSTANCE hMod, DWORD

dwThreadId), passes the address, as defined in the function’s lpfn

parameter, of a user-defined function to the Windows 95 operating
system. These functions, known as hook functions, allow an application
to filter a pre-determined set of events or user inputs, such as keystrokes
and mouse movements, before they are passed to the Windows
environment at large. The SetWindowsHookEx function’s idhook

parameter specifies the type of event or input that the hook function
pointed to by lpfn will recognize. Besides user input events like the
keyboard and the mouse, the Windows API also defines values for the
idhook parameter for hooks that facilitate a number of other functions
such as debugging, and the development of computer training
programs. Code within a hook function can be used to redirect the flow
of the application program that currently has the focus, or Windows 95
as a whole.

The second Windows API function, UnhookWindowsHook disconnects
a hook function from Windows 95.

Hook functions can have local or global scope. Hooks with local scope
only function within the context of the application that currently has the
focus in the Windows environment. These local hook functions are used
to implement the hot keys that have become a mainstay in word
processing and spreadsheet programs. Global hooks, on the other
hand, are operational systemwide and can be used to alter the
functioning of the Windows 95 environment. Although the code for local
hook functions can be part of the application they support, Windows 95
dictates that global hook functions must reside in their own separate
dynamically linked library (DLL).
AN1733

MOTOROLA 17

Application Note
CALLERID.EXE’s design, therefore, is divided into two parts:

• CALLERID.EXE, the executable program

• CALLDLL.DLL, the DLL containing the global hook function

Both modules were compiled with Microsoft Visual C++ Version 2.0.
CALLDLL.DLL’s code consists of a function to install the keyboard hook
function and the hook function itself. In the code’s call to the Windows
API’s SetWindowsHookEx function, the idhook parameter is set to
WH_KEYBOARD, which is a pre-defined value that configures the hook
function to handle keyboard events. This code is placed in a DLL
because Windows requires that global hook functions reside in a DLL.
The keyboard hook function in this application must be global in scope
so that CALLERID.EXE can be invoked no matter what application may
currently have the focus in Windows 95. The only limitation with
CALLERID.EXE is that it will not be invoked if the current window with
the focus is a DOS window.

The main function of the executable is to receive the Caller ID data from
the Caller ID device, format it, and display it in a dialog box on the PC’s
monitor. The program flow of the executable is as follows. (Consult
Appendix D — CALLERID.EXE Program Flow Chart for a flow chart
describing CALLERID.EXE’s design.)

1. CALLERID.EXE is invoked immediately after Windows 95 boots
up. The main window of the CALLERID application is initialized to
come up in the hidden state. This causes CALLERID.EXE to begin
executing in the background of the Windows 95 environment.

2. CALLERID.EXE accesses CALLERID.DLL and connects the
keyboard hook function to Windows 95. The hook function
examines each keystroke that is entered by the user for the
<CONTROL L> hot key sequence.

3. On detecting a <CONTROL L> key combination, the keyboard
hook function calls the Windows API FindWindow() function to
locate the application’s hidden main window. The Windows
ShowWindow() function is then called to activate
CALLERID.EXE’s main window and give it the focus in
Windows 95.
AN1733

18 MOTOROLA

Application Note
Summary
4. CALLERID.EXE displays a popup dialog box on the monitor
displaying this text: "Receiving Data . . ."

5. The application waits for a keystroke from the Caller ID device.

6. If CALLERID.EXE receives a ’;’ character from the Caller ID
device, the device has detected a checksum error in the Caller ID
data received from the telephone line. The CALLERID.EXE will
then display this message in the dialog box: "Line Error."
Otherwise, it acquires the full stream of Caller ID data from the
device.

7. C-language string manipulation functions are used to parse the
string into the two character segments that represent each byte of
Caller ID data. C-language string conversion functions are then
used to convert each ASCII segment into the original binary data
that was captured on the Caller ID device.

8. CALLERID.EXE formats the binary data so that it can be
displayed in the dialog box. CALLERID.EXE will format data
according to whether the Caller ID data received is in the SDMF
or MDMF format.

9. The Caller ID information is displayed in the dialog box. The dialog
box remains displayed until the user presses the dialog box’s "OK"
or "Deactivate" buttons.

10. The dialog box is hidden again if the user presses the "OK" button.
CALLERID.EXE then returns to waiting for a hot key sequence. If
the "Deactivate" button is pressed, CALLER.EXE will be
deactivated and will no longer function until Windows 95 is reset.

Summary

Caller ID services provide both commercial and residential customers
with valuable data for more efficient processing of telephone calls. The
MC145447 used in conjunction with a member of the Motorola
68HC(7)05 microcontroller family provides a cost-effective hardware
solution for the implementation of Caller ID applications.
AN1733

MOTOROLA 19

Application Note
Keyboard Caller ID Device Operating Instructions

1. Copy CALLERID.EXE to the hard drive and directory of your
choice. A suggested path might be C:\CALLERID\.

2. Copy CALLDLL.DLL to the C:\WINDOWS\SYSTEM\ directory.

3. Add CALLERID.EXE to the Windows 95 start menu by performing
these steps:

a. Press the Start button on the Windows 95 TaskBar.

b. Select the Settings item from the menu displayed.

c. Select the Taskbar item from the submenu displayed. This
will cause a dialog box to be displayed.

d. Select the Start Menu Programs tab in the dialog box.

e. Press the Add button.

f. Press the dialog box’s Browse button.

g. Find CALLERID.EXE using the dialog box provided. Press the
Next button.

h. You will be asked to select a folder to place the shortcut for the
selected program. Find and select the StartUp folder from the
list of folders displayed. Press the Next button.

i. Press the Finish button to complete the setup.

4. Disconnect the keyboard’s connector from the host computer’s
keyboard port.

5. Connect the keyboard Caller ID device to the host computer’s
keyboard interface.

6. Connect the keyboard’s connector to the receptacle for it on the
keyboard Caller ID device.

7. Connect the telephone line to one of the R-J11 connectors on the
keyboard Caller ID device.

8. Connect a telephone extension line between the keyboard Caller
ID’s second R-J11 connector and your telephone. This completes
the hardware installation of the keyboard Caller ID device.
AN1733

20 MOTOROLA

Application Note
Bibliography
9. Shut down and restart Windows 95.

10. Caller ID should now be activated. Caller ID will display a dialog
box with Caller ID information every time data is sent to it by the
keyboard Caller ID device. To manually deactivate the program,
press the <CONTROL L> key combination and press the
Deactivate button in the dialog box.

Bibliography

Holzner, Steve Advanced Visual C++ 4.1st. ed., New York, N.Y.: M&T
Books, 1996.

Konzak, Gary J. PC Keyboard Design. 2nd. ed., San Diego, Calif.:
Annabooks, 1993.

LSSGR: Voiceband Data Transmission Interface, Section 6.6, GR-30-
CORE, Issue 1, Bellcore, December 1994.

 "Message Type Vaues for SDMF and MDMF." Digest of Technical
Information. Bellcore, May 1996: 11-16.

Messmer, Hans-Peter. The Indispensable PC Hardware Book – Your
Questions Answered.1st. ed. Reading, MA.: Addison-Wesley Publishing
Company, 1994.

Motorola. MC68HC705P9 Technical Data. MC68HC705P9/D, Rev. 3.0

Motorola. Motorola Communications Device Data. DL136/D, Rev. 3
AN1733

MOTOROLA 21

A
p

p
lic

a
tio

n N
o

te

22
M

O
T

O
R

O
LA

A
p

p
e

nd
ix A

 —
 Ke

yb
o

a
rd

 C
a

lle
r ID

 D
e

vic
e

 Sc
he

m
a

tic
s

1998 Sheet 1 of 3

REV

O

ALLER ID BOARD

N DATE
4/12/97

 O N S

LER ID DEVICE
A
N

1733

Date: February 1,

Size Document Number

B

Title

KEYBOARD C

DESCRIPTIOREV

R E V I S I

O SCHEMATIC FOR THE KEYBOARD CAL

Decouple Caps for ICs as labeled.

KEYBOARD CALLER ID
NOTES, UNLESS OTHERWISE SPECIFIED

VCC IS APPLIED TO PIN 8 OF ALL 8-PIN IC’s,
PIN 14 OF ALL 14-PIN IC’s, PIN 16 OF ALL
16-PIN IC’s, PIN 20 OF ALL 20-PIN IC’s, ETC.

GROUND IS APPLIED TO PIN 4 OF ALL 8-PIN IC’s,
PIN 7 OF ALL 14-PIN IC’s, PIN 8 OF ALL 16-PIN
IC’s, PIN 10 OF ALL 20-PIN IC’s, ETC.

DESIGNATOR OF GATES ARE SHOWN AS FOLLOWS :
DEVICE TYPE, PIN NUMBERS, AND REFERENCE3.

GROUND PIN LOCATIONS :2.

VCC PIN LOCATIONS :1.

7407

21

U1A

7407
1 AND 2
U1A

= DEVICE TYPE
= PIN NUMBERS
= REFERENCE DESIGNATORS

4. RESISTANCE VALUES ARE IN OHMS.

5. RESISTORS ARE 1/4 WATT, 5%.

6. CAPACITANCE VALUES ARE IN MICROFARADS.

All caps are 0.1 uF @ 50 V

(U1) (U1) (U2) (U3) (U4)

GND

VCC

C1

1 uF C2 C3 C4 C5

 6

 8 9

U3C

4066

 12

 11 10

U3D

4066

VCC

 13 12

U2F

7407

Spare Gates

VCC

A
pplication N

ote
A

ppendix A
 —

 K
eyboard C

aller ID
 D

evice S
chem

atics

A
N

173

M
O

T
O

R
O

LA
23

te: December 17, 1997 Sheet 2 of 3

ze Document Number REV

O

tle

KEYBOARD CALLER ID BOARD

D1
LED

VCC

R1
470

ER-ON INDICATOR

J1

6-PIN DIN

VCC

CLOCK

DATA

5
3
1

6
4
2

GND

GND

(MALE)
(FRONT VIEW)

OSCOSC SHEET 3
3

Da

Si

B

Ti

POW

CLOCK

VCC

R4
10K

 5

 4 3

U3B

4066

KCLOCK

(FEMALE)

 13

 1 2

U3A

4066

J2

6-PIN DIN

5
3
1

(FRONT VIEW)

KDATA

GND

DATA

11 10

U2E

7407

6
4
2

GND

VCC

R2
4.7K

R6
4.7K

VCC

 9 8

U2D

7407

GND

VCC

R3
4.7K

VCC

R5
4.7K

 1 2

U2A

7407

 3 4

U2B

7407

 5 6

U2C

7407
VCC

VCC

CONTROL
BUSY
CLOCK_IN
CLOCK_OUT
DATA_IN
DATA_OUT

VCC

DOC

RDO*
PWRUP*

R8
2K PD7/TCAP 25

PC7 15

PC6 16

PC5 17

PC4 18

PC3 19

PC2 20

PC1 21

PC0 22

PB7 13

PB6 12

PB5 11

RESET 1 IRQ 2

GND 14

PA7 3

PA6 4

PA5 5

PA4 6

PA3 7

OSC2 26OSC1 27

PA0 10PA1 9PA2 8

PD5 23TCMP 24

VCC 28
U1

MC68HC705P9

DOC

RDO*
PWRUP*SHEET 3

SHEET 3

SHEET 3

R7
100K

C6
1uF

*NOTE: SINCE THIS DESIGN WAS PROTOTYPED ON A WIRE WRAP BOARD,
A CANNED OSCILLATOR WAS USED INSTEAD OF A CRYSTAL AS THE SYSTEM CLOCK.

GND

GND

VCC

GND

OSC

NC 1VCC 14

OUT 8 GND 7

Y1

3.68MHz

A
p

p
lic

a
tio

n N
o

te

24
M

O
T

O
R

O
LA

: December 17, 1997 Sheet 3 of 3

Document Number REV

O

e

KEYBOARD CALLER ID BOARD

DOC

RDO*

PWRUP*

OSC

SHEET 2

SHEET 2

SHEET 2

SHEET 2
A
N

1733

Date

Size

B

Titl

R14

10K

C7

470pF

1
2
3
4
5
6

JP1

RJ-11

1

2

D6
P3100SA

1
2
3
4
5
6

JP2

RJ-11

D2

1N4004

C9

0.22uF
VCC

R13
270K

R15

10K

D5

1N4004

C8

470pF

TI 1 VDD 16

RDI1 3

DOC 15

RDI2 4

DOR 14

NC 5

RT 6 PWRUP 7

OSCIN 7

OSCOUT 9

CDO 13

RDO 12

CLKSIN 11

GND 8

RI 2

U4

MC145447
GND

VCC

DOC

RDO*

PWRUP*

OSC

VCC

R10
470K

R11
18K

R12
15K

GND

D4

1N4004

C11
0.22uF

GND
D3

1N4004

C10

0.22uF

GND

Application Note
Appendix B — System Operation Flow Chart
Appendix B — System Operation Flow Chart

KEYBOARD CALLER ID
DEVICE IS POWERED UP

AND RESET WHEN THE PC
IS POWERED UP

 HAS
 A CALLER ID

 TRANSMISSION
BEEN RECEIVED

?

 A

CALLERID.EXE IS
 INVOKED IMMEDIATELY

AFTER WINDOWS 95
BOOTS UP

CALLERID.EXE
OPERATES IN THE

BACKGROUND
 OF THE WINDOWS

ENVIRONMENT

KEYBOARD CALLER ID
DEVICE WAITS FOR

A CALLER ID
TRANSMISSION

NO

 YES

THE KEYBOARD CALLER
ID DEVICE TRANSMITS A

<CONTROL L> KEY
 SEQUENCE TO THE PC

B

AN1733

MOTOROLA 25

Application Note
YES

 NO

A

WAS A
 CHECKSUM ERROR

DETECTED IN
THE DATA?

KEYBOARD CALLER
ID DEVICE TRANSMITS

A ’;’ CHARACTER
 TO THE PC

CALLERID.EXE IS
GIVEN THE FOCUS

 IN WINDOWS 95
AND DISPLAYS
 A DIALOG BOX

KEYBOARD CALLER
ID DEVICE TRANSMITS

THE CALLER ID DATA TO
THE HOST AS A STRING

CALLERID.EXE
 DISPLAYS AN ERROR

MESSAGE
IN THE DIALOG BOX

CALLERID.EXE
WAITS FOR THE USER

TO PRESS ONE OF THE
DIALOG BOX’S BUTTONS

CALLERID.EXE
DISPLAYS CALLER ID

DATA IN THE DIALOG BOX

WAS
THE OK
BUTTON

PRESSED
?

NO YESCALLERID.EXE
 HIDES THE DIALOG BOX

AND GOES INTO THE
BACKGROUND

B

CALLERID.EXE IS
DEACTIVATED AND NO

 LONGER RESPONDS TO
THE HOT KEY SEQUENCE

KEYBOARD CALLER
ID DEVICE TRANSMITS A

 ’.’ CHARACTER
 TO THE PC
AN1733

26 MOTOROLA

Application Note
Appendix C — Keyboard Caller ID Device Firmware Flow Chart
Appendix C — Keyboard Caller ID Device Firmware Flow Chart

THE MCU’S I/O PORTS
 ARE CONFIGURED

AND INITIALIZED

 IS
 THE /RDO
 SIGNAL
 ASSERTED

?

 MICROCONTROLLER
WAITS FOR A DATA

STREAM FROM THE
MC145447

 *START OF MAIN LOOP

NO

HAS
 /RDO BEEN

DEASSERTED
WITHIN 2.25

SECS?

NO

 THE MICROCONTROLLER
 CAPTURES, PARSES,

AND CALCULATES
THE CHECKSUM OF
THE DATA STREAM

A

HAS
 A START BIT

BEEN
 RECEIVED WITHIN

2 SECS
?

 YES

 YES

NO

YES
AN1733

MOTOROLA 27

Application Note
THE MICROCONTROLLER
TRANSMITS A
 <CONTROL L>

 KEY COMBINATION

 WAS
 AN ERROR
 DETECTED IN THE
 CAPTURED
 DATA?

 THE MICROCONTROLLER
 TRANSMITS A
 ’;’ CHARACTER TO THE
 HOST COMPUTER

 YES

 THE MICROCONTROLLER
TRANSMITS A ’.’

CHARACTER SIGNALLING
THE START

OF A DATA STREAM

 THE MICROCONTROLLER
 RETURNS TO WAITING FOR

A DATA STREAM.
 *START OF MAIN LOOP

THE MICROCONTROLLER
 CONVERTS THE DATA INTO
 AN ARRAY OF KEYBOARD
 SCAN CODES.

THE MICROCONTROLLER
TRANSMITS THE CALLER

ID DATA AND A"/"
CHARACTER

TO THE HOST COMPUTER

NO

A

AN1733

28 MOTOROLA

Application Note
Appendix D — CALLERID.EXE Program Flow Chart
 Appendix D — CALLERID.EXE Program Flow Chart

CALLERID.EXE IS
INVOKED IMMEDIATELY

AFTER WINDOWS 95
BOOTS UP

CALLERID.EXE
INSTALLS A KEYBOARD

HOOK FUNCTION IN
WINDOWS 95

CALLERID.EXE
HIDES THE

APPLICATION’S MAIN
WINDOW, A DIALOG BOX

CALLERID.EXE’S
KEYBOARD HOOK

FUNCTION WAITS FOR A
HOT KEY SEQUENCE

DID
THE DEVICE SEND

A <CONTROL L>
 HOT KEY?

 YES

A

CALLERID.EXE IS
GIVEN THE FOCUS

IN WINDOWS 95 AND
DISPLAYS A DIALOG BOX

NO

B

AN1733

MOTOROLA 29

Application Note

AN1733

30 MOTOROLA

A

YES

 NO

WAS
A ’;’ CHARACTER
 RECEIVED FROM

THE DEVICE?

CALLERID.EXE
RECEIVES THE CALLER ID

DATA STREAM FROM
THE CALLER ID DEVICE

CALLERID.EXE
WAITS FOR A

CHARACTER STREAM
FROM THE

CALLER ID DEVICE

CALLERID.EXE DISPLAYS
THE CALLER ID DATA
 IN THE DIALOG BOX

CALLERID.EXE
WAITS FOR THE USER TO

 PRESS ONE OF THE
DIALOG BOX’S BUTTONS

 CALLERID.EXE
 DISPLAYS AN

 ERROR MESSAGE
 IN THE DIALOG BOX

 CALLERID.EXE IS
 DEACTIVATED AND NO

 LONGER RESPONDS TO
 THE HOT KEY SEQUENCE

 NOYES
CALLERID.EXE

HIDES THE DIALOG BOX
AND GOES INTO THE

BACKGROUND

WAS
THE OK
BUTTON

PRESSED?

B

Application Note
Appendix E — Keyboard Caller ID Device Firmware Source Code
Appendix E — Keyboard Caller ID Device Firmware Source Code

**
; TITLE CALLER ID
; USE CALLER ID APP. NOTES.
; REVISION 1.0
; AUTHOR Derrick B. Forte and Hai Nguyen
; GROUP
; DATE 04/21/97
; ASSEMBLER IASM05
;
**
* *
* SYSTEM EQUATES *
* *
**

PORTA EQU $00 ;Port A data register
PORTB EQU $01 ;Port B data register
PORTC EQU $02 ;Port C data register
DDRA EQU $04 ;Port A data direction register
DDRB EQU $05 ;Port B data direction register
DDRC EQU $06 ;Port C data direction register
DDRAMASK EQU $F5 ;Port A data direction register mask
DDRBMASK EQU $FF ;Port B data direction register mask
DDRCMASK EQU $F8 ;Port C data direction register mask
PORTAMASK EQU DDRAMASK ;Port A data register mask
PORTBMASK EQU DDRBMASK ;Port B data register mask
PORTCMASK EQU DDRCMASK ;Port C data register mask

**
* *
* KEYBOARD EQUATES *
* *
**

CLOCK_OUT EQU 2 ;Device keyboard clock output signal
CLOCK_IN EQU 3 ;Device keyboard clock input signal
DATA_OUT EQU 0 ;Device keyboard data output signal
DATA_IN EQU 1 ;Device keyboard data input signal
BUSY EQU 4 ;Keyboard busy signal
CONTROL EQU 5 ;Keyboard enable/disable signal
RESEND EQU $FE ;PC keyboard protocol resend command
ERROR EQU 0 ;Error bit in the FLAG variable
RX_PARITY EQU 0 ;Parity bit in the FLAG variable
PARITY EQU 7 ;Received parity bit in the FLAG variable
AN1733

MOTOROLA 31

Application Note
**
* *
* CALLER ID Equates *
* *
**
DOC EQU 0 ;Caller ID cooked data signal
RDO EQU 2 ;Caller ID ring detect signal
PWRUP EQU 3 ;Caller ID powerup signal
SDMF EQU $4 ;Valid message type parameter for SDMF
MDMF EQU $80 ;Valid message type parameter for MDMF
PERIOD EQU $49 ;Keyboard scan code for a period character
BACKSLASH EQU $4A ;Keyboard scan code for a backslash character
CNTRL EQU $14 ;Keyboard scan code for the CONTROL key
SEMICOLON EQU $4C ;Keyboard scan code for a ';' character

**
* *
* Global Variables *
* *
**
 ORG $80 ;Start of global variable memory space

DATA RMB 1 ;Storage variable for data that is to be
 ;transmitted to or received from the keyboard
FLAG RMB 1 ;Global function return flag.
TX_RESEND RMB 1 ;Keyboard re-transmission variable
TEMP RMB 1 ;Global temporary storage variable
TEMPA RMB 1 ;Temporary storage variable for the accumlator
TEMPX RMB 1 ;Temporary storage variable for the X register
RX_BUFFER RMB 1 ;Data receiver variable
OUTERCNT RMB 1 ;Generic delay counter variable
DATA_COUNT RMB 1 ;Generic data counter variable
ERRORCD RMB 1 ;Data acquisition error flag.
LNE_ERROR RMB 1 ;Line error flag
INNERCNT RMB 1 ;Generic delay counter variable
SZCNT RMB 1 ;Counter variable for number of seizure set
COUNTER RMB 1 ;General counter variable
COUNTER1 RMB 1 ;General counter variable 1
WORD RMB 1 ;Current data word read/received
HIGH_NIBBLE RMB 1 ;High nibble of data to be sent to the PC
LOW_NIBBLE RMB 1 ;Low nibble of data to sent to the PC
MSGTYPE RMB 1 ;Caller ID message type variable
MSGLEN RMB 1 ;Caller ID message length variable
RAW_S_BUF RMB 40 ;Start of caller ID data buffer
CHKSUM RMB 1 ;Caller ID checksum variable
TIMECNT RMB 1 ;Counter variable for timing loop
RAW_PT RMB 1 ;Pointer to current RAW caller ID data in buffer
MBCNT EQU SZCNT ;Mark bit counter variable
WBCNT EQU COUNTER1 ;Word bit counter variable
AN1733

32 MOTOROLA

Application Note
Appendix E — Keyboard Caller ID Device Firmware Source Code
ORG $100 ;Start of Caller ID program
BEGIN EQU *
 sei
 jsr INITIALIZE ;Initialize the MCU's I/O ports
 bclr PWRUP,PORTC ;Assert the MC145447's PWRUP pin to
 ;power the device up.

**
* *
* MAIN PROGRAM LOOP *
* *
**

MAIN EQU *

RDOWAITL brset RDO,PORTC,RDOWAITL ;Wait for RDO* signal to be asserted.
 jsr RDOWAITH ;Wait a maximum of 2.25 seconds for
 ;the RDO* signal to be deasserted.
 jsr DOCWAIT ;Wait up to 2 seconds for DOC start bit.
 clr CHKSUM ;Clear checksum variable.
 clr LNE_ERROR ;Clear line error flag.
 jsr GETWORD ;Get caller ID message type parameter
 ;byte.
 tst ERRORCD ;Check to see if the message type byte
 ;was received properly. If not send a
 ;line error message to the PC.
 beq GOOD_TYPE
 jmp MAIN
GOOD_TYPE lda WORD ;Check to see if a SDMF valid message
 cmp #SDMF ;type parameter was received.
 beq STORE_TYPE ;Check to see if a MDMF valid message
 cmp #MDMF ;type parameter was received.
 beq STORE_TYPE ;If an invalid message type parameter
 jmp MAIN ;is received, jump to the start.
STORE_TYPE jsr UPDATECS ;Update the message checksum
 ;calculation.
 lda WORD ;Store the message type parameter
 sta MSGTYPE ;byte.
 jsr GETWORD ;Get the caller ID message length byte.
 tst ERRORCD ;Check to see if an error occurred
 beq GOOD_LENGTH ;in receiving the caller ID message
 jmp LINE_ERROR ;length byte.
GOOD_LENGTH jsr UPDATECS ;Update the message checksum
 lda WORD ;calculation.
 sta MSGLEN ;Store the message length byte
 clrx ;parameter.
MORE_DATA jsr GETWORD ;Get the rest of the Caller ID data.
 tst ERRORCD
 beq STORE_CID_DATA
 jmp LINE_ERROR
STORE_CID_DATA jsr UPDATECS ;Update the checksum calculation.
AN1733

MOTOROLA 33

Application Note
 lda WORD
 sta RAW_S_BUF,x ;Store the data bytes in a buffer.
 incx
 cpx MSGLEN ;Loop until the number of data bytes
 bne MORE_DATA ;received equals the value in the
 ;MSGLEN variable
 jsr GETWORD ;Get the message's checksum.
 tst ERRORCD ;Check for an error in receiving the
 beq GOOD_CHECKSUM ;checksum byte.
 jmp LINE_ERROR
GOOD_CHECKSUM lda CHKSUM ;Form 2' complement of checksum value
 coma ;calculated by above chksum summation.
 inca
 cmp WORD ;Compare the calculated checksum to
 beq CSMATCH ;received checksum. If they are equal
 jmp LINE_ERROR ;continue, otherwise send an error
 ;message to the PC.
CSMATCH sta CHKSUM ;Store the checksum value.
 jsr SEND_2_PC ;Send data to the PC.

 bra MAIN

* Function Name: INITIALIZE *
* Purpose: Initializes the MCU's I/O Ports *
* *

INITIALIZE lda #PORTAMASK ;Set bits 1 & 3 of port A low,
 sta PORTA ;Set all other bits high.
 lda #DDRAMASK ;Set bits 1 & 3 of port A as inputs,
 sta DDRA ;Set all other bits as outputs.
 lda #PORTBMASK ;Set all port B bits high.
 sta PORTB
 lda #DDRBMASK ;Set all port B bits as outputs.
 sta DDRB
 lda #PORTCMASK ;Set bit 3 of port C high,
 sta PORTC ;set all other bits low.
 sta DDRC ;Set bit 3 of port C as an output,
 ;set all other bits as inputs.
 rts
AN1733

34 MOTOROLA

Application Note
Appendix E — Keyboard Caller ID Device Firmware Source Code
**
* *
* Function Name: RDOWAITH *
* Purpose: Checks for the proper deassertion of the RDO* signal. *
* If the RDO* is not deasserted within 2.25 seconds jump to the line *
* error handling routine. Otherwise return to the calling function. *
* *
**

RDOWAITH ldx #9 ;If the RDO signal is not deasserted,
RDO_LOOP jsr W1_4SEC ;after 2.25 seconds jump to the line
 brset RDO,PORTC,RDO_EXIT ;error function. Otherwise return.
 decx
 bne RDO_LOOP
RDO_ERROR jmp MAIN
RDO_EXIT rts

**
* *
* Function Name: DOCWAIT *
* Purpose: Wait a maximum of 2 seconds after the deassertion of RDO* for the *
* first data start bit. If the bit is not received, jump to the line *
* error handling routine. Otherwise return to the calling function. *
* *
**

DOCWAIT ldx #$C8
 sta OUTERCNT
CDOCILP ldx #$C8
 sta INNERCNT
DOCILP brclr 0,PORTC,EXITDOC
 jsr W50US
 dec INNERCNT
 bne DOCILP
 dec OUTERCNT
 bne CDOCILP
 jmp MAIN
EXITDOC rts

**
* *
* Function Name: UPDATECS *
* Purpose: Calculates the checksum for the incoming caller ID data. *
* *
**

UPDATECS lda CHKSUM
 add WORD
 sta CHKSUM
 rts
AN1733

MOTOROLA 35

Application Note
**
* *
* Function Name: GETWORD *
* Purpose: Get a caller ID data word that includes a start bit, 8 data bits, *
* and a stop bit. If an error occurs in reading the word, the ERRORCD *
* is incremented. *
* *
**

GETWORD stx TEMPX ;Save X register
 clr MBCNT
WAITSB jsr GETZERO ;Get start bit.
 tst ERRORCD ;Start bit is successfully received if
 bne STARTBNR ;the ERRORCD variable is clear.
 brclr DOC,PORTC,STARTBR ;Check for a spurious start bit.
STARTBNR inc MBCNT
 lda MBCNT ;Allow for up to 10 mark bits between
 cmp #$A ;two data words.
 bne WAITSB
 bra EXITGW ;Error code is set to non-zero byO

 GETZERO routine
STARTBR clr WORD
 clr WBCNT
 jsr W400US
MOREWB jsr W830US
 lsr WORD ;Shift in data LSB.
 brclr DOC,PORTC,ZEROBIT
 bset 7,WORD
ZEROBIT inc WBCNT
 lda WBCNT
 cmp #8 ;Get 8 bits making up a byte.
 bne MOREWB
 jsr GETONE ;error code=0 if stop bit for received

 word exit
EXITGW ldx TEMPX
 rts

**
* *
* Function Name: GETZERO *
* Purpose: Wait up to 840 usec for a zero bit. If the a zero bit is not *
* received within the timeout period, increment the ERRORCD variable. *
* *
**
AN1733

36 MOTOROLA

Application Note
Appendix E — Keyboard Caller ID Device Firmware Source Code
GETZERO lda #$54
 clr ERRORCD
WAITGZ brclr DOC,PORTC,EXITGZ
 jsr W10US
 deca
 bne WAITGZ
 inc ERRORCD
EXITGZ rts
**
* *
* Function Name: GETONE *
* Purpose: Wait up to 840 usec for DOC to go high. If a one bit is not *
* received within the timeout period, increment the ERRORCD variable. *
* *
**

GETONE lda #$54
 clr ERRORCD
WAITGO brset DOC,PORTC,EXITGO ;Exit loop if DOC pin is high.
 jsr W10US ;Wait 10 usec.
 deca ;$53=83, continue waiting for DOC going
 bne WAITGO ;high if 840 usec have not passed.
 inc ERRORCD ;Increment the ERRORCD variable if a
EXITGO rts ;timeout occurred.

**
* *
* Function Name: LINE_ERROR *
* Purpose: Sends a message the PC informing it that a line error has occurred. *
* *
**

LINE_ERROR inc LNE_ERROR
 jsr SEND_2_PC
 jsr GOWAIT ;Go to the GOWAIT function to reset the
 rts ;state of the program.

**
* *
* Function Name: GOWAIT *
* Purpose: Resets the stack pointer, disables the caller ID device and *
* jumps to the beginning of the program. *
* *
**

GOWAIT rsp ;Reset stack pointer.
 bset BUSY,PORTA ;Make sure that the keyboard is connected
 bset CONTROL,PORTA ;to the PC.
 jmp MAIN ;Return to the start of the program.
AN1733

MOTOROLA 37

Application Note
**
* *
* Function Name: SEND_BYTE *
* Purpose: Sends a byte to the PC using the IBM AT keyboard to keyboard port *
* protocol. *
* *
**

SEND_BYTE lda DATA ;Save the data to be
 sta TX_RESEND ;transmitted in case
 ;it has to be retransmitted.
 jsr SEND ;Send the byte to the PC.
 brclr ERROR,FLAG,EXIT_SEND_BYTE ;If no error occurred in the
 jsr ERROR_DELAY ;transmission exit the
 jsr RECEIVE ;function. Otherwise prepare
 brclr ERROR,FLAG,CHECK_FOR_$FE ;to receive a $FE from the PC.
 jmp GOWAIT ;If a $FE was not received or
CHECK_FOR_$FE lda #RESEND ;if an error occurred while
 cmp RX_BUFFER ;receiving a $FE reset the
 beq RESEND_BYTE ;state of the program.
 jmp GOWAIT ;Otherwise resend the
RESEND_BYTE lda TX_RESEND ;original data byte.
 sta DATA ;If the retransmission failed
 jsr SEND ;reset the state of the
 brclr ERROR,FLAG,EXIT_SEND_BYTE ;program.
 jmp GOWAIT
EXIT_SEND_BYTE rts

* *
* Function Name: SEND_2_PC *
* Purpose: Sends scan codes for the caller ID data to the PC. *
* *

SEND_2_PC jsr WAIT_4_PC ;Wait for no activity on the
 ;keyboard lines for 5
 ;character times.
 bclr CONTROL,PORTA ;Disconnect the keyboard from
 bclr BUSY,PORTA ;the PC.
 lda #$14 ;Send a "CONTROL L" key
 sta DATA ;sequence to the PC to start
 jsr SEND_BYTE ;the software on the host PC.
 jsr W1_10SEC
 lda #$4B
 sta DATA
 jsr SEND_BYTE
 jsr W1_10SEC
 lda #$F0
 sta DATA
 jsr SEND_BYTE
AN1733

38 MOTOROLA

Application Note
Appendix E — Keyboard Caller ID Device Firmware Source Code
 jsr W1_10SEC
 lda #$4B
 sta DATA
 jsr SEND_BYTE
 jsr W1_10SEC
 lda #$F0
 sta DATA
 jsr SEND_BYTE
 jsr W1_10SEC
 lda #$14
 sta DATA
 jsr SEND_BYTE
 jsr W1_4SEC
 jsr W1_4SEC
 jsr W1_4SEC
 jsr W1_4SEC ;If a line error occurred
 tst LNE_ERROR ;send a semicolon.
 beq SEND_MESSAGE
 lda #SEMICOLON
 sta DATA
 jsr SEND_BYTE
 jmp SEND_2_PC_EXIT
SEND_MESSAGE lda #PERIOD ;Send a message start
 sta DATA ;delimiter to the PC.
 jsr SEND_BYTE
 jsr W1_10SEC
 lda MSGTYPE ;Send the message type byte
 jsr CONVERT_DATA ;to the PC.
 lda HIGH_NIBBLE
 sta DATA
 jsr SEND_BYTE
 jsr W1_10SEC
 lda LOW_NIBBLE
 sta DATA
 jsr SEND_BYTE
 jsr W1_10SEC
 lda MSGLEN ;Send message length parameter
 jsr CONVERT_DATA ;to the PC
 lda HIGH_NIBBLE
 sta DATA
 jsr SEND_BYTE
 jsr W1_10SEC
 lda LOW_NIBBLE
 sta DATA
 jsr SEND_BYTE
 jsr W1_10SEC
 clr DATA_COUNT
DATA_LOOP ldx DATA_COUNT
 lda RAW_S_BUF,X ;Send the Caller ID data to
 jsr CONVERT_DATA ;the PC.
 lda HIGH_NIBBLE
AN1733

MOTOROLA 39

Application Note
 sta DATA
 jsr SEND_BYTE
 jsr W1_10SEC
 lda LOW_NIBBLE
 sta DATA
 jsr SEND_BYTE
 jsr W1_10SEC
 inc DATA_COUNT
 lda DATA_COUNT
 cmp MSGLEN
 bne DATA_LOOP
 lda CHKSUM ;Send the checksum to the PC
 jsr CONVERT_DATA
 lda HIGH_NIBBLE
 sta DATA
 jsr SEND_BYTE
 jsr W1_10SEC
 lda LOW_NIBBLE
 sta DATA
 jsr SEND_BYTE
 jsr W1_10SEC
 lda #BACKSLASH ;Send the backslash character
 sta DATA ;to PC to serve as an end delimiter.
 jsr SEND_BYTE
 jsr W1_10SEC
SEND_2_PC_EXIT bset BUSY,PORTA ;Reconnect the keyboard to the
 bset CONTROL,PORTA ;PC.
 rts

**
* *
* Function Name: CONVERT_DATA *
* Purpose: Converts Caller ID parameter and data into scan codes for *
* transmission to the PC through its keyboard interface port. *
* *
**

CONVERT_DATA stx TEMPX
 sta TEMP
 and #$0F ;Mask out the upper nibble of
 ;the byte to be processed.
 tax ;Get the scan code for the lower
 lda SCAN_CODE_TABLE,X ;nibble and store it.
 sta LOW_NIBBLE
 ldx TEMP ;Shift the data byte to the
 lsrx ;right four times and get the
 lsrx ;scan code for the upper
 lsrx ;nibble.
 lsrx
 lda SCAN_CODE_TABLE,X
 sta HIGH_NIBBLE
 ldx TEMPX
 rts
AN1733

40 MOTOROLA

Application Note
Appendix E — Keyboard Caller ID Device Firmware Source Code

* *
* Function Name: SEND FUNCTION *
* Purpose: Transmits a scan code to the host PC's keyboard interface port. *
* *

SEND clr TEMP ;Clear the parity check
 clr FLAG ;Clear the return flag
 bset CLOCK_OUT,PORTA ;Initialize the keyboard's
 ;clock signal.
 bset DATA_OUT,PORTA ;Initialize the keyboard's
 ;data signal.
 ldx #8 ;Transmit eight data bits.
 bclr DATA_OUT,PORTA ;Clock in the start bit.
 jsr HALF_CLOCK
 bclr CLOCK_OUT,PORTA
 jsr FULL_CLOCK
 bset CLOCK_OUT,PORTA ;If the PC pulls the clock
 jsr HALF_CLOCK ;line low abort the trans-
 brclr CLOCK_IN,PORTA,SEND_ERROR ;mission, and set the error
SEND_BIT ror DATA ;flag.
 bcs SEND_ONE
 bclr DATA_OUT,PORTA
 bra SEND_DATA
SEND_ONE bset DATA_OUT,PORTA ;If the PC pulls the data line
 brclr DATA_IN,PORTA,SEND_ERROR ;low while a high bit is being
 inc TEMP ;transmitted, abort the trans-
SEND_DATA jsr HALF_CLOCK ;mission, and set the error
 bclr CLOCK_OUT,PORTA ;flag. Otherwise transmit the
 jsr FULL_CLOCK ;bit.
 bset CLOCK_OUT,PORTA
 jsr HALF_CLOCK
 brclr CLOCK_IN,PORTA,SEND_ERROR
 decx
 bne SEND_BIT
 ror TEMP ;Calculate and send the parity
 bcc PARITY_ONE ;bit.
 bclr DATA_OUT,PORTA
 bra SEND_PARITY
PARITY_ONE bset DATA_OUT,PORTA
 brclr DATA_IN,PORTA,SEND_ERROR
SEND_PARITY jsr HALF_CLOCK
 bclr CLOCK_OUT,PORTA
 jsr FULL_CLOCK
 bset CLOCK_OUT,PORTA
 jsr HALF_CLOCK
 brclr CLOCK_IN,PORTA,SEND_ERROR
 bset DATA_OUT,PORTA
 brclr DATA_IN,PORTA,SEND_ERROR
AN1733

MOTOROLA 41

Application Note
 jsr HALF_CLOCK
 bclr CLOCK_OUT,PORTA
 jsr FULL_CLOCK
 bset CLOCK_OUT,PORTA
 ldx #3
WAIT_4_BUSY brclr CLOCK_IN,PORTA,PC_BUSY ;Allow 100uS for the PC
 jsr FULL_CLOCK ;to pull the clock line low
 decx ;after transmitting a scan
 bne WAIT_4_BUSY ;code. If this event does not
 bra SEND_ERROR ;occur an error has occurred.
PC_BUSY ldx #$C ;Allow a maximum of 500uS
STILL_BUSY brset CLOCK_IN,PORTA,CHECK_DATA ;for the clock line to go
 jsr FULL_CLOCK ;high. If this timeout is
 decx ;exceeded an error has
 bne STILL_BUSY ;occurred.
 bra SEND_ERROR
CHECK_DATA brset DATA_IN,PORTA,SEND_EXIT ;The PC will pull the data
SEND_ERROR inc FLAG ;line low if a transmission error.
SEND_EXIT bset CLOCK_OUT,PORTA ;If an error occurs set the

 error flag.
 bset DATA_OUT,PORTA ;Otherwise return a zero in
 rts ;the function return flag.

* *
* Function Name: RECEIVE *
* Purpose: Receives an AT keyboard protocol resend command from the PC in *
* the event of a transmission error. *
* *

RECEIVE clr DATA ;Initialize all function
 clr FLAG ;variables.
 clr TEMP
 bset DATA_OUT,PORTA ;Initialize the keyboard data
 bset CLOCK_OUT,PORTA ;and clock signals.
 ldx #$9
 bclr CLOCK_OUT,PORTA ;Clock in the start bit.
 jsr FULL_CLOCK
GET_BITS bset CLOCK_OUT,PORTA ;Clock in 8 data bits and
 jsr HALF_CLOCK ;the parity bit.
 brclr DATA_IN,PORTA,DATA_LO
 cpx #$01
 beq HIGH_BIT
 inc TEMP

 HIGH_BIT sec
 bra STORE
AN1733

42 MOTOROLA

Application Note
Appendix E — Keyboard Caller ID Device Firmware Source Code
DATA_LO clc
STORE ror DATA
 jsr HALF_CLOCK
 bclr CLOCK_OUT,PORTA
 jsr FULL_CLOCK
 decx
 bne GET_BITS
 rol DATA
 bset CLOCK_OUT,PORTA
 bcc CLR_PARITY
 bset PARITY,TEMP
 bra STOP
CLR_PARITY bclr PARITY,TEMP
STOP jsr HALF_CLOCK ;Check for a stop bit.
 brclr DATA_IN,PORTA,RCV_ERROR
 bclr DATA_OUT,PORTA
 jsr HALF_CLOCK
 bclr CLOCK_OUT,PORTA
 jsr FULL_CLOCK
 brclr PARITY,TEMP,TST_PARITY ;Test for the correct parity.
 brset RX_PARITY,TEMP,RCV_ERROR ;If a parity error occurred,
 bra RCV_EXIT ;increment the error flag.
TST_PARITY brset RX_PARITY,TEMP,RCV_EXIT
RCV_ERROR inc FLAG
RCV_EXIT bset CLOCK_OUT,PORTA
 bset DATA_OUT,PORTA
 rts

**
* *
* Function Name: WAIT_4_PC *
* Purpose: This function waits for no activity on the keyboard clock line for *
* five character times before allowing the device to transmit to the PC. *
* *
**

WAIT_4_PC ldx #$64
PCWAIT_LOOP brclr CLOCK_IN,PORTA,WAIT_4_PC
 jsr HALF_CLOCK
 decx
 bne PCWAIT_LOOP
 rts
AN1733

MOTOROLA 43

Application Note
**
* *
* TIME DELAY ROUTINES *
* *
**

ERROR_DELAY lda #$40
 bra CLOCK_LOOP
FULL_CLOCK lda #7
 bra CLOCK_LOOP
HALF_CLOCK lda #3
CLOCK_LOOP deca
 bne CLOCK_LOOP
 rts
**
* *
* Function Name: W10US *
* Purpose: 10 usec delay loop assuming an OSC1 clock of 3.68MHZ and *
* this routine is entered from a 'jsr' extended(6 cycles) instruction *
* for a total of 18 instruction cycle (slightly less than 10 usec). *
* *
**

W10US nop ;2 cycles for each 'nop' instruction.
 nop
 nop
 rts ;6 cycles for rts instruction.

**
* *
* Function Name: W50US *
* Purpose: 25usec delay loop assuming an OSC1 clock of 3.68MHZ and *
* this routine is entered from a 'jsr' extended(6 cycles) instruction *
* for a total of 92 instruction cycles. *
* *
**

W50US lda #$D ;2 cycles
CONTW50 deca ;3 cycles
 bne CONTW50 ;3 cycles
 rts ;6 cycles
AN1733

44 MOTOROLA

Application Note
Appendix E — Keyboard Caller ID Device Firmware Source Code
**
* *
* Function Name: W400US *
* Purpose: 400usec delay loop assuming an OSC1 clock of 3.68MHZ and this *
* routine is entered from a 'jsr' extended(6 cycles) instruction. *
* *
**

W400US stx TEMPX
 ldx #$8
LW400 jsr W50US
 decx
 bne LW400
 ldx TEMPX
 rts

**
* *
* Function Name: W830US *
* Purpose: 830usec delay loop assuming an OSC1 clock of 3.68MHZ and this *
* routine is entered from a 'jsr' extended (6 cycles) instruction. *
* *
**

W830US stx TEMPX ;5 cycles
 ldx #$F ;2 cycles
CONTW830 jsr W50US ;6 cycles
 nop ;2 cycles
 decx ;3 cycles
 bne CONTW830 ;3 cycles
 nop ;2 cycles
 nop ;2 cycles
 ldx TEMPX ;4 cycles
 rts ;6 cycles

**
* *
* Function Name: W1_4SEC *
* Purpose: .25 sec delay loop assuming a OSC1 clock of 3.68MHZ and *
* this routine is entered from a 'jsr' extended(6 cycles) instruction *
* for a total of 20,000 instruction cycles.(1.84 cycle = 1usec) *
* *
**

W1_4SEC lda #$12 ;2 cycles
 sta OUTERCNT ;4 cycles
OUTERLOOP lda #$FF ;2 cycles
 sta INNERCNT ;4 cycles
AN1733

MOTOROLA 45

Application Note
CONTW1/4 jsr W50US ;92 cycles
 dec INNERCNT ;5 cycles

 bne CONTW1/4 ;3 cycles
 dec OUTERCNT ;5 cycles
 bne OUTERLOOP ;3 cycles
 rts

**
* *
* Function Name: W1_10SEC *
* Purpose: .1 sec delay loop assuming an OSC1 clock of 3.68MHZ and this *
* is entered from a 'jsr' extended (6 cycles) instruction. *
* *
**

W1_10SEC lda #$4 ;2 cycles
 sta OUTERCNT ;4 cycles
W1_10LOOP lda #$FF ;2 cycles
 sta INNERCNT ;4 cycles
CONTW1/10 jsr W50US ;92 cycles
 dec INNERCNT ;5 cycles
 bne CONTW1/10 ;3 cycles
 dec OUTERCNT ;5 cycles
 bne W1_10LOOP ;3 cycles
 rts

*************************** SCAN CODE TABLE ***

 ORG $700

SCAN_CODE_TABLE FCB $45 ;Scan code for "0"
 FCB $16 ;Scan code for "1"
 FCB $1E ;Scan code for "2"
 FCB $26 ;Scan code for "3"
 FCB $25 ;Scan code for "4"
 FCB $2E ;Scan code for "5"
 FCB $36 ;Scan code for "6"
 FCB $3D ;Scan code for "7"
 FCB $3E ;Scan code for "8"
 FCB $46 ;Scan code for "9"
 FCB $1C ;Scan code for "a"
 FCB $32 ;Scan code for "b"
 FCB $21 ;Scan code for "c"
 FCB $23 ;Scan code for "d"
 FCB $24 ;Scan code for "e"
 FCB $2B ;Scan code for "f"

 ORG $1FFE ;Beginning of code to execute
 FDB BEGIN ;after a reset.
 END
AN1733

46 MOTOROLA

Application Note
Appendix F — CALLERID.EXE Source Code File
Appendix F — CALLERID.EXE Source Code File

#include <afxwin.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

#define IDB_BUTTON1 100 // ID for main window's "OK" button.
#define IDB_BUTTON2 150// ID for main window's "Deactivate" button.

// Function prototype to install CallerID DLL.
extern "C" __declspec(dllimport) void WINAPI InstallHook(void);

// Declare the application class.
class CallerID : public CWinApp
{
 public:

 virtual BOOL InitInstance();
};

// Create the only instance of the application class.
CallerID PCCallerID;

// Declare the application's main window class.
class CallerIDWindow : public CFrameWnd
{
 CButton *OKbutton; // Pointer to the window's 'OK' button.
 CButton *Deactivatebutton; // Pointer to the window's 'Deactivate' button.
 CString Name; // Variable that holds the caller ID name string.
 CString Number; // Variable that holds the caller ID number string.
 CString Date_Time; // Variable that holds the caller ID time and date string.
 CString Date; // Variable holding the date string.
 CString Time; // Variable holding the time string.
 char RawData[200]; // Temporary storage space for raw data from the keyboard.
 BOOL StartByte_flag; // This flag marks the start of data acquisition on
 // from the PC's keyboard interface port.
 BOOL Display_flag; // This flag is set when the message data is ready to be
 // displayed.
 BOOL LineError_flag; // This flag is set when a line error has occurred.
 BOOL SDMF_flag; // This flag is set if the message received is in the SDMF
 // format.
AN1733

MOTOROLA 47

Application Note
 public:

 CallerIDWindow(); // Main window constructor.
 ~CallerIDWindow(); // Main window destructor.

 void Get_MessageType();
 void Process_SDMF();

 void Process_MDMF();
 void Format_Data();

 afx_msg void Handle_OK_Button();
 afx_msg void Handle_Deactivate_Button();
 afx_msg void OnChar(UINT nChar, UINT nRepCnt, UINT nFlags);
 afx_msg void OnPaint();
 DECLARE_MESSAGE_MAP();

};

BEGIN_MESSAGE_MAP(CallerIDWindow,CFrameWnd)
 ON_BN_CLICKED(IDB_BUTTON1, Handle_OK_Button)

 ON_BN_CLICKED(IDB_BUTTON2, Handle_Deactivate_Button)
 ON_WM_PAINT()
 ON_WM_CHAR()

END_MESSAGE_MAP()

BOOL CallerID::InitInstance()
{
 // Create and hide the application's main window.
 m_pMainWnd = new CallerIDWindow();
 m_pMainWnd->ShowWindow(SW_HIDE);
 m_pMainWnd->UpdateWindow();

 // Install the keyboard board hook.
 InstallHook();

 return TRUE;
}

// Application's main window constructor.
CallerIDWindow::CallerIDWindow()
{
 // Initialize main window variables.
 StartByte_flag = FALSE;
 LineError_flag = FALSE;
 Display_flag = FALSE;

 // Create the main window.
 Create(NULL,"PC Caller ID", WS_OVERLAPPED, CRect(150,150,400,350));
AN1733

48 MOTOROLA

Application Note
Appendix F — CALLERID.EXE Source Code File
 // Create the "OK" button.
 CRect r;
 GetClientRect(&r);
 OKbutton = new CButton();
 OKbutton -> Create("OK",
 WS_CHILD|WS_VISIBLE|BS_PUSHBUTTON,

 CRect(r.left+20,r.top+120,r.right-50,r.bottom-20),
 this,IDB_BUTTON1);

 // Create the "Deactivate" button.
 Deactivatebutton = new CButton();
 Deactivatebutton -> Create("Deactivate",
 WS_CHILD|WS_VISIBLE|BS_PUSHBUTTON,

 CRect(r.left+130,r.top+120,r.right-20,r.bottom-20),
 this,IDB_BUTTON2);

}

// Application main window destructor.
CallerIDWindow::~CallerIDWindow()
{
 delete OKbutton;
 delete Deactivatebutton;
}

void CallerIDWindow::OnChar(UINT nChar, UINT nRepCnt, UINT nFlags)
{
 static int rawdataindex;
 int tempint;

 // If a semicolon was received a line error has occurred. Display the
 // "Line Error" message in the main window.
 if(!StartByte_flag && (nChar == ';'))
 {
 LineError_flag = TRUE;
 Display_flag = TRUE;

Invalidate(TRUE);
 }

 // If a period character is received and StartByte_flag is not set,
 // set the StartByte_flag so that data acquisition can start.
 if(!StartByte_flag && (nChar == '.'))
 {
 StartByte_flag = TRUE; // Set the StartByte variable.

RawData[0] = '\0'; // Initialize the raw data array.
rawdataindex = 0;
Invalidate(TRUE);

 }
AN1733

MOTOROLA 49

Application Note
 // If the StartByte_flag is set check the character that has been received.
 // If a backslash character is received this signifies the end of the data
 // stream from the device. Otherwise add the new character to the RawData
 // array.
 else
 {

tempint = strlen(RawData);

if((tempint > 0) && ((char)nChar == '/'))
 {
 RawData[rawdataindex] = '\0';

 Get_MessageType();

 if(SDMF_flag)
 Process_SDMF();
 else
 Process_MDMF();

 Format_Data();
 Invalidate(TRUE);

 }
else
 {
 RawData[rawdataindex] = (char)nChar;
 rawdataindex++;
 }

 }
 }

void CallerIDWindow::OnPaint()
{
 // If the display flag is set, display an appropriate message.
 if(Display_flag)
 {
 // If a line error occurred, display the "Line Error" message.
 if(LineError_flag)

 {
 CPaintDC dc(this);
 CRect r;
 GetClientRect(&r);
 dc.DrawText("Line Error",-1,CRect(r.left+90, r.top+50,

 r.right-20,r.bottom-90),DT_SINGLELINE);
 }
AN1733

50 MOTOROLA

Application Note
Appendix F — CALLERID.EXE Source Code File
// If a valid message is received, display it.
else

 {
 // Display the data.
 CPaintDC dc(this);

 dc.DrawText(Date, -1, CRect(30,10,200,400),DT_SINGLELINE);
 dc.DrawText(Time, -1, CRect(29,30,200,400),DT_SINGLELINE);

 dc.DrawText(Number, -1, CRect(10,50,200,200),DT_SINGLELINE);
 dc.DrawText(Name, -1, CRect(24,70,200,400),DT_SINGLELINE);

 }
 }
 else
 {

 // Display the "Receiving Data..." message while the caller ID data is
 // being acquired and processed.
 CPaintDC dc(this);
 CRect r;
 GetClientRect(&r);
 dc.DrawText("Receiving Data...",
 -1,CRect(r.left+70, r.top+50, r.right-20,r.bottom-90),
 DT_SINGLELINE);

}

 // Draw the "OK" and "Deactivate" buttons on the main window.
 CRect r;
 GetClientRect(&r);
 OKbutton->MoveWindow(CRect(r.left+20, r.top+120, r.right-130, r.bottom-20));
 OKbutton->UpdateWindow();
 Deactivatebutton->MoveWindow(CRect(r.left+130, r.top+120, r.right-20,
 r.bottom-20));
 Deactivatebutton->UpdateWindow();
}

void CallerIDWindow::Get_MessageType()
{
 int i;
 char tempstr[50];
 char *endptr;

 // Get the message type parameter from the data stream.
 strncpy(tempstr,&RawData[0],2);
 i = (UINT)strtoul(tempstr,&endptr,16);

 // If the message type parameter is equal to 4 return a one. Otherwise
 // return a zero.
 if(i==4)
 SDMF_flag = TRUE;
 else
 SDMF_flag = FALSE;
AN1733

MOTOROLA 51

Application Note
}

void CallerIDWindow::Process_SDMF()
{
 // Initialize the data parameter strings.
 Name = "";
 Number = "";
 Date_Time = "";
 int i;
 char tempstr[50];
 char *endptr;

 // Parse out the time, date, and number from the data
 // stream.
 for(i=4;i<20;i+=2)
 {

 // Parse out the caller ID date and time.
 strncpy(tempstr,&RawData[i],2);
 Date_Time += (UINT)strtoul(tempstr,&endptr,16);

 }

 // Parse out the caller ID telephone number.
 for(i=20;i<40;i+=2)
 {

 strncpy(tempstr,&RawData[i],2);
 Number += (UINT)strtoul(tempstr,&endptr,16);

}

 Name = "UNAVAILABLE";
 }

void CallerIDWindow::Process_MDMF()
{
 // Initialize the data parameter strings.
 Name = "";
 Number = "";
 Date_Time = "";
 int messagelength = 0;
 int parametertype = 0;
 int parameterlength = 0;
 int tempint = 2;
 char tempstr[50];
 char *endptr;
AN1733

52 MOTOROLA

Application Note
Appendix F — CALLERID.EXE Source Code File
 // Get the message length parameter from the raw data stream.
 tempstr[2] = 0x00;
 strncpy(tempstr,&RawData[tempint],2);
 messagelength = (int)strtoul(tempstr,&endptr,16);
 tempint = 4;
 // Parse out the time, date, number, and name parameters from the data
 // stream.
 while((messagelength > 0)&& !LineError_flag)

 {
 strncpy(tempstr,&RawData[tempint],2);
 parametertype = (int)strtoul(tempstr,&endptr,16);

 strncpy(tempstr,&RawData[tempint+2],2);
 parameterlength = (int)strtoul(tempstr,&endptr,16);
 messagelength -=2;
 tempint += 4;

 // Parse out the data stream into various caller ID parameter
 // type string.
 switch(parametertype)

 {
 // Parse out the caller ID date and time parameter.
 case 1:
 while(parameterlength > 0)
 {

 strncpy(tempstr,&RawData[tempint],2);
 Date_Time += (UINT)strtoul(tempstr,&endptr,16);
 messagelength -= 1;
 tempint += 2;
 parameterlength -= 1;
 }

 break;

 // Parse out the caller ID telephone number parameter.
 case 2 :

 while(parameterlength > 0)
 {

 strncpy(tempstr,&RawData[tempint],2);
 Number += (UINT)strtoul(tempstr,&endptr,16);

 messagelength -= 1;
 tempint += 2;
 parameterlength -= 1;
 }

 break;
AN1733

MOTOROLA 53

Application Note
 // Parse out the caller ID name parameter.
 case 7 :

 while(parameterlength > 0)
 {
 strncpy(tempstr,&RawData[tempint],2);
 Name += (UINT)strtoul(tempstr,&endptr,16);
 messagelength -= 1;
 tempint += 2;
 parameterlength -= 1;
 }
 break;

 default :
 // If an invalid parameter is received set the line
 // error global flag and display a "Line Error" message.
 LineError_flag = TRUE;

 }
 }

}

void CallerIDWindow::Format_Data()
{
 // Initialize the strings to be displayed.
 // Initialize data acquisition flags.
 CString Date_Text = "Date: ";
 CString Time_Text = "Time: ";
 CString Number_Text = "Number: ";
 CString Name_Text = "Name: ";
 BOOL PM_flag = FALSE;
 char tempstr[50];
 int tempint;

 // Format the date string.
 // If the first number of the date is equal to zero eliminate it from
 // the string otherwise include it in the string.
 if(Date_Time.Mid(0,1) == 0x30)
 Date_Text = Date_Text + Date_Time.Mid(1,1) + '/' + Date_Time.Mid(2,2);
 else
 Date_Text = Date_Text + Date_Time.Mid(0,2) + '/' + Date_Time.Mid(2,2);

 Date = Date_Text;
 // Format the time string.
 // If the first number of the time is equal to zero eliminate it from
 // the string, otherwise include it in the string.
 tempstr[2] = 0x00;
 strcpy(tempstr,Date_Time.Mid(4,2));
 tempint = atoi(tempstr);
AN1733

54 MOTOROLA

Application Note
Appendix F — CALLERID.EXE Source Code File
 if(tempint == 0)
 {

Date_Time.SetAt(4,'1');
Date_Time.SetAt(5,'2');
PM_flag = FALSE;
 }

 else if(tempint == 12)
PM_flag = TRUE;

 if((tempint > 12))
 {

PM_flag = TRUE;
tempint -= 12;

 _itoa(tempint,tempstr,16);

 if(tempint >= 9)
 {
 Date_Time.SetAt(4,tempstr[0]);
 Date_Time.SetAt(5,tempstr[1]);
 }
else
 {
 Date_Time.SetAt(4,'0');
 Date_Time.SetAt(5,tempstr[0]);
 }

 }

 if(Date_Time.Mid(4,1) == 0x30)
 {
 Time_Text = Time_Text + Date_Time.Mid(5,1) + ':' + Date_Time.Mid(6,2);

 if(PM_flag)
 Time_Text += " PM";

 else
 Time_Text += " AM";

 }

 else
 {
 Time_Text = Time_Text + Date_Time.Mid(4,2) + ':' + Date_Time.Mid(6,2);

if(PM_flag)
 Time_Text += " PM";

 else
 Time_Text += " AM";

 }

 Time = Time_Text;
AN1733

MOTOROLA 55

Application Note
 // Format the telephone number string.
 // If the first number of the telephone number is zero, eliminate the
 // area code from the number.
 if(Number.Mid(0,1) == 0x30)

Number_Text = Number_Text + Number.Mid(3,3) + '-' + Number.Mid(6,4);
 else
 Number_Text = Number_Text + '(' + Number.Mid(0,3) + ") " + Number.Mid(3,3) +
 '-' + Number.Mid(6,4);
 Number = Number_Text;

 // Format the name string if one exists.
 Name_Text = Name_Text + Name;
 Name = Name_Text;

 // Set the display flag.
 Display_flag = TRUE;
}

void CallerIDWindow::Handle_OK_Button()
{
 // Re-initialize all main window variables
 StartByte_flag = FALSE;
 Display_flag = FALSE;
 LineError_flag = FALSE;
 RawData[0] = '\0';

 // Clear the main window and hide it.
 Invalidate(TRUE);
 ShowWindow(SW_HIDE);
}

void CallerIDWindow::Handle_Deactivate_Button()

{
 DestroyWindow();
}
#define DllExport __declspec(dllexport)

// Keyboard hook installation function prototype
DllExport void WINAPI InstallHook(void);

// Keyboard hook function prototype.
LRESULT CALLBACK KeyboardHook (int nCode, WORD wParam, DWORD lParam);
AN1733

56 MOTOROLA

Application Note
Appendix G — CALLDLL.DLL Source Code File
Appendix G — CALLDLL.DLL Source Code File

#include <windows.h>
#include "calldll.h"

#pragma data_seg("CommMem")
 HHOOK hHook = NULL;
#pragma data_seg()

HANDLE hDLLInst = 0;

// This function is the main function required by Windows 95 for
// DLLs written in C.

BOOL WINAPI DllMain (HANDLE hModule, DWORD dwFunction, LPVOID lpNot)
{
 hDLLInst = hModule;

 switch (dwFunction)
 {
 case DLL_PROCESS_ATTACH:
 case DLL_PROCESS_DETACH:
 default:
 break;
 }
 return TRUE;
}

// This function connects the keyboard hook function to the Windows 95
// operating system.

DllExport void WINAPI InstallHook (void)
{
 if (hHook == NULL){

 hHook = (HHOOK)SetWindowsHookEx(WH_KEYBOARD,(HOOKPROC)KeyboardHook, hDLLInst,
0);

 }
 else{
 UnhookWindowsHookEx(hHook);

 hHook = NULL;
 }
}

AN1733

MOTOROLA 57

Application Note
// This function is connected to the Windows 95 environment and monitors
// user key strokes for a <CONTROL L> key combination. On detecting the
// hotkey, the hook interrupts the application that has the focus in the
// Windows 95 environment, and restores CALLERID.EXE's main window thus
// giving it the application in Windows 95.

LRESULT CALLBACK KeyboardHook (int nCode, WORD wParam, DWORD lParam)
{

LRESULT lResult = 0;
HWND hWndMain = 0;

// If the hook function detects a <CONTROL L> key combination, interrupt
// the current application in the Windows 95 environment, give CALLERID.EXE the
// focus and restore its main window.

if(nCode == HC_ACTION){
if ((wParam == 'L') && (GetKeyState(VK_CONTROL) < 0) && (lParam &

0x80000000)){

 hWndMain = FindWindow(NULL,"PC Caller ID");
ShowWindow(hWndMain,SW_RESTORE);

lResult = 1;
return(lResult);

}
}

 // Move to the next hook function in the hook function chain.
 return (int)CallNextHookEx(hHook, nCode, wParam, lParam);
}

AN1733

58 MOTOROLA

Application Note
Appendix G — CALLDLL.DLL Source Code File
AN1733

MOTOROLA 59

N

O
N

-
D

I
S

C
L

O
S

U
R

E

A
G

R
E

E
M

E
N

T

R
E

Q
U

I
R

E
D

Application Note
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its
products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts.
Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems
intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a
situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold
Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the
design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 1-800-441-2447 or

303-675-2140
Mfax™: RMFAX0@email.sps.mot.com – TOUCHTONE 602-244-6609, US & Canada ONLY 1-800-774-1848
INTERNET: http://www.mot.com/SPS/
JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC, 6F Seibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan.

81-3-3521-8315
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298

 HOME PAGE: http://motorola.com/sps
AN1733/D

© Motorola, Inc., 1998

Mfax is a trademark of Motorola, Inc.

	Introduction
	The Caller ID Protocol
	The Message Assembly Layer
	The Data Link Layer
	The Physical Layer
	Design Example: An IBM AT Keyboard Caller ID Devic...
	Keyboard Caller ID Device Hardware Design Overview...
	The Caller ID Data Acquisition Block
	The Keyboard Interface Block
	Keyboard Caller ID Device Software Design Overview...
	Keyboard Caller ID Device Firmware Design
	CALLERID.EXE Design

	Summary
	Keyboard Caller ID Device Operating Instructions
	Bibliography
	Appendix A — Keyboard Caller ID Device Schematics
	Appendix B — System Operation Flow Chart
	Appendix C — Keyboard Caller ID Device Firmware Fl...
	Appendix D — CALLERID.EXE Program Flow Chart
	Appendix E — Keyboard Caller ID Device Firmware So...
	Appendix F — CALLERID.EXE Source Code File
	Appendix G — CALLDLL.DLL Source Code File

